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1 AGN

It is believed that the accretion disk around supermassive black holes (BH) at galac-
tic centres gives rise to UV thermal emission. This emission is associated with Active
Galactic Nuclei (AGNs).

The optical spectra of bright AGNs show additional bright broad emission lines. Those
emission lines arise from the dense gas in the Broad Line Region (BLR), which is ionized
by the UV photons from the accretion disk. See the sketch to visualise this model.

We can assume that the flux of broad emission lines varies in response to the variation
of the UV continuum with a time delay. This time delay should be proportional to the
separation RBLR between the BH and the BLR.

Assume that the size of the accretion disk is negligible as compared to RBLR.

(a) (1 point) Estimate the time lag (days) between the B-band continuum and broad
emission line (H-β) using the light curves shown below. The x-axis is in reduced
Julian Dates (JD).
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(b) (3 points) Estimate RBLR in parsecs (pc).

(c) (2 points) Estimate the angular separation of this region θBLR (in arcsec) from the
blackhole, if this AGN is 100 Mpc away from us.

It is possible to estimate the mass of the system using the Virial theorem, if the
velocity dispersion of the gasses in the BLR and the size of the system are known.
Assume that the masses of the accretion disk and broad line region are negligible, as
compared to the black hole. The velocity dispersion vσ may be estimated from the
broadening of the given emission line. We will take the corresponding wavelength
dispersion to be

σ =
FWHM

2.35
where FWHM is the full width at half maximum of the broad emission line.

(d) (5 points) Calculate the velocity dispersion vσ in units of km s−1, from the spectral
line shown below.
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(e) (4 points) Calculate the mass of the central BH (Mvir,BH) in a unit of M�.

Solution

(a) Taking multiple reference points, we get that the BLR emission lags by about
20-25 days. 1.0
Answers from 15 to 25 days are acceptable.

(b) As the AGN is located very far, the time lag can be approximated as the time
taken by UV emission to reach BLR region. Thus,

RBLR = c∆t = 3× 108 × 20× 86 400

= 5.2× 1014 m = (0.017± 0.004) pc 3.0

(c) As this AGN is 100 Mpc away from us,

θBLR =
0.017

100e6
× 206265

= (3.5± 0.9)× 10−5 arcsec 2.0

(d) The FWHM is approximately (85± 5) Å and the peak is approximately at
(4940± 5) Å 2.0

vσ =
σc

λpeak
=

FWHM× c
2.35λpeak

=
85× 3× 105

2.35× 4940
2.0

vσ = (2200± 140) km s−1 1.0

(e)

Mvir,BH =
v2σRBLR

G
=

(2.2× 106)2 × 5.2× 1014

6.674× 10−11

= 3.8× 1037 kg

Mvir,BH = (1.9± 0.7)× 107M� 4.0
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2 Minor Planet

Table 1 gives ecliptic longitude (λ) and parallax (p) at different times (t), for a certain
hypothetical minor planet. The baseline for the parallax is the diameter of the earth.
The time is expressed in years and for your reference ecliptic longitudes of the Sun (λ�)
for the same dates are also given the table. Let us assume that the orbital inclination
of this minor planet, with respect to the ecliptic, is negligible and the eccentricity of the
Earth’s orbit is negligible.

(a) (38 points) Calculate the coordinates of the minor planet in the heliocentric polar
coordinate system and put them in a polar plot. The x-axis in the plot should be
directed towards the initial position of the minor planet. Draw the major axis of the
orbit of the minor planet.
Identify erroneous observation(s), if any.

(b) (6 points) Assuming the heliocentric orbit of the minor planet to be elliptical, de-
termine

(i) the semimajor axis length ap.

(ii) eccentricity e.

(iii) the period P .

(c) (6 points) Estimate the errors in the values of P , ap and e.

Table 1: Minor planet data

t λ λ� p
[year] [◦] [◦] [′′]

2012.3 336.73 40.95 3.82
2012.6 3.44 134.83 7.24
2012.9 50.71 242.08 7.09
2013.4 94.52 64.84 2.40
2013.6 121.40 134.59 2.16
2013.9 154.31 241.82 2.75
2014.2 25.33 353.29 3.16
2014.5 148.51 99.04 1.99
2014.8 176.26 205.45 1.83
2015.0 216.33 280.19 2.03
2015.3 187.5 28.55 2.897

Solution

(a) We consider the 4ESP , the vertices of which are Earth (E), Sun (S) and the
minor planet (P).
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E

S

a
⊕

=
1
au

P

rh

r
∆λ

θh
ψP

where ∆λ = |λ− λ�|. 2.0

r (in m) =
R⊕

p (in rad)

∴ r (in au) =
206265R⊕
p · a⊕

1.0

By using the cosine rule and sine rule,

r2h = a2⊕ + r2 − 2a⊕r cos(∆λ)

rh =
√
a2⊕ + r2 − 2a⊕r cos(∆λ) 1.0

sin θh
r

=
sin(∆λ)

rh

∴ θh = sin−1
(
r sin(∆λ)

rh

)
1.0

An angle ψP is defined as angle swept by the vector
−→
SP from an arbitrary x

axis (see figure). Let us fix the direction of the x-axis as the direction
−→
SP at the

initial moment t = 2012.3. In other words, ψP (2012.3) = 0. Using the same
x-axis, let us define corresponding angle for the Earth, ψE. Thus, we have

ψP = ψE − θh

If we take any two consecutive measurements,

∆ψE = ∆λ� 2.0

This is preferred over the conversion of time difference to angle as this data
has better accuracy.
Using these formulae, one can find r, rh, ψE and ψP for every measurement
instance in the data. ψP and rh can be used to plot locations of the minor
planet.
Alternatively, one can also convert these to rectangular coordinates, i.e.

x = rh cosψP ,

y = rh sinψP ;
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t r rh sin θh θh ψE ψP x y
[year] [au] [au] [◦] [◦] [◦] [au] [au]

2012.3 2.302 2.073 -1.0000 270.00 270.00 0 2.073 0
2012.6 1.215 2.020 -0.4510 -26.81 3.88 30.69 1.737 1.031
2012.9 1.240 2.229 0.1097 6.30 111.13 104.83 -0.571 2.155
2013.4 3.664 2.839 0.6391 140.27 293.89 153.62 -2.543 1.262
2013.6 4.071 3.106 -0.2991 197.40 3.64 166.24 -3.017 0.739
2013.9 3.198 3.309 -0.9655 -74.92 110.87 185.79 -3.292 -0.334
2014.2 2.783 2.007 0.7357 132.63 222.34 89.71 0.010 2.007
2014.5 4.419 3.845 0.8735 119.13 328.09 208.96 -3.364 -1.862
2014.8 4.805 3.962 -0.5914 216.26 74.50 218.24 -3.112 -2.453
2015.0 4.332 3.994 -0.9738 -76.85 149.24 226.09 -2.770 -2.877
2015.3 3.035 3.985 0.2736 15.88 257.6 241.72 -1.888 -3.509

there are 11 rows. Two points for each row. 22.0

Note. The parallax value for p(2014.2) = 3.16′′ is obviously an outlier. Due to
this, the corresponding position of the minor planet is also an outlier. There-
fore, it should not be included in the plot or in the next analysis. 1.0

4.0

These 4 points are for merely drawing the approximate polar or rectangular
plot. Points for the line of apsides are separate (see below). Marking the earth
positions or drawing the visually fit ellipse (blue line) is NOT expected.
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One may try to identify a minimum and a maximum and maximum in the
calculated values of rh and take these as the aphelion and perihelion. In the
figure these two points are shown and the line between drawn , i.e. the magenta
line. 1.0Clearly these are not the aphelion and perihelion (as evidenced by the
fact that the line connecting them does not pass through the focus), but they
lie close. 1.0

We see that the points on either side of supposed aphelion are reasonably close
(and the planet will be moving slower close to aphelion). However, there is
a big gap between the second and third point, we take the aphelion position
to be the correct one and draw the line of apsides to pass through aphelion
and (0,0). 2.0(see below for the actual calculation of ap that does not rely on the
graphical identification of the line of the apsides.)

(b) (i) Assuming that the points above are close to the perihelion and aphelion,
we should realise that the distance between them is roughly equal to the
length of the major axis. Using the cosine rule,

ψ1 = 30.69◦

r1 = 2.020 au

ψ2 = 226.09◦

r2 = 3.994 au

∴ ∆ψP = 226.09◦ − 30.69◦

= 195.40◦

2aP ≈
√
r21 + r22 − 2r1r2 cos ∆ψP

=
√

2.0202 + 3.9942 − 2× 2.02× 3.994× cos 195.40◦

= 5.965 au

∴ aP ≈ 2.98 au 3.0

(ii)

e =
ra − rp
ra + rp

≈ 3.994− 2.02

3.994 + 2.02
≈ 1

3
= 0.33 2.0

Some students may visually fit an ellipse to the data and draw this line
up to this visually fit ellipse. For the fit ellipse in the figure, the length
of the major axis (green line) is 2a = 2.98 au and e = 1

3
, rotated by 52◦.

(iii) From Kepler’s Laws,

P =
√
a3P =

√
2.983

= 5.15 yr 1.0

The semi-period will be 2.58 yr. Note that the time difference between
our chosen points is only 2.4 yr. This is fine, as we can see from the best
fit ellipse that these points are not exactly along the line of apsides.
At the same time, this is precisely the reason why one should not take ∆t
between these two points as the semi-period.
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(c) The error in the semimajor axis is determined by the error in r1 and r2 which,
in turn, depend on p and ∆ψ. The latter is dominated by the uncertainty in
the orientation of the ellipse (i.e., the assumption that r1 and r2 are close to
the line of the apsides).

In order to take this into account we take as ∆ψP the difference with the
value that corresponds to the difference in angles of the actual perihelion and
aphelion (180◦); i.e., δ∆ψP ≈ 15/180, corresponding to ∆(∆ψ) ≈ 0.08π ≈ 0.26.
The geocentric distance is determined via parallax, the other quantities are
constants, so it may be written rg ∝ p−1. The immediate consequence is
δrg = δp where δ is the designation for the relative error. Thus,

∆r = rδr = rδp

This gives ∆r1 = 1.01× 10−2 au and ∆r2 = 1.997× 10−2 au.
The error in ap is then

∆aP =

√
(r1 − r2 cos ∆Ψp)2∆r21 + (r2 − r1 cos ∆Ψp)2∆r22 + (r1r2sin∆Ψp)2∆(∆Ψp)2

2
√

2aP
= 0.04 au

∴ aP = (2.98± 0.04) yr 3.0

The uncertainty in the period can then be obtained from Kepler’s law and is

δP = 3/2δap = 2× 10−2

∴ P = (5.2± 0.1) yr 1.0

The eccentricity can be calculated from rp = ap(1−e). Error propagation leads
to

∆e =

√
((1− e)δr)2 +

(
1− e
ap

∆ap

)2

= 9× 10−3 ≈ 0.01

∴ e = 0.33± 0.01 2.0
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3 Hypervelocity stars

In recent years, a new field of research has emerged, that of Hypervelocity Stars (HVS
for short). These are stars in our Galaxy (mostly at its outskirts), which are moving with
excessive velocities and may be escaping from the Milky Way.

In this question, you will use spectroscopic and astrometric measurements in order to
calculate the velocity of one such star, called “HVS1”, consider its origin and whether it
may escape the Galaxy.

Figure 1 shows a spectrum of HVS1 in the blue to UV part of the spectrum:

Figure 1: The spectrum of HVS1 shifted to the rest frame of the star (i.e., there is no
Doppler shift due to the motion of the star along the line of sight).

(a) (7 points) Determine the spectral type of the star using the standard spectra in
Appendix 3 and the absorption lines identified on the spectrum of HVS1. (Note that
the spectrum above contains both stellar and interstellar absorption lines.)

Solution
By comparing with spectral charts in appendix 3, we notice that

� H-lines are the most promienent lines,

� He I feature at 4144 Å is bearly visible and

� Ca I feature around 4230 Å is not seen.

Thus, it may be reasonable to restrict the range of spectral types to B5-A5. 2.0
We find that the ratio of the intensity of a pair of lines and compare it with
the standard spectra. We see, Ca II/Hε ∼ 1

4
2.0

For B8 standard spectra it is ∼ 1
5
, for A0 standard spectra it is ∼ 1

3
. 2.0
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Thus, we deduce that the spectral type lies somewhere between B8 and A0.
One may write any spectral type in the range, say B9. 1.0

(b) (18 points) Detailed modeling of the spectral lines places the star between luminosity
classes V (Main Sequence) and IV (subgiant).

i. The apparent magnitude of the star in the visual band is mV = 19.84. Find
the absolute magnitude MV of the star using Appendix 1 for the two possible
luminosity classes.
You may ignore the uncertainty in mV since the uncertainty in your calculation
will be dominated by the uncertainty in MV .

Solution
Appendix 1 gives absolute magnitude for stars of different spectral and
luminosity classes. The relevant rows are A0 and B5. 1.0
In order to estimate the absolute magnitude of a B9 star, interpolate be-
tween B5 and A0.

For MS:

M(B9) = M(A0)− (M(A0)−M(B5))

5
× (10− 9)

= 0.7− (0.7− (−1.1))

5
= 0.7− 0.36

= 0.34 2.0

For subgiants:

M(B9) = M(A0)− (M(A0)−M(B5))

5
× (10− 9)

= 0.1− (0.1− (−1.8))

5
= 0.1− 0.38

= −0.28 2.0

ii. For both these possible luminosity classes, calculate the star’s distance from the
Sun, ignoring interstellar absorption.

Solution

mv = Mv + 5 log(d)− 5

∴ d = 10
mv−Mv+5

5 1.0

For MS:

d ≈ 79.4 kpc 1.0

For subgiants:

d ≈ 105.7 kpc 1.0

iii. The galactic coordinates of HVS1 are l = 227.335 372 67◦, b = 31.331 993 86◦. Is
the assunption of ignoring the interstellar absorption justified? Write “YES” or
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“NO”.

Solution
Yes. HSV1 is off the galactic plane, well into the halo. interstellar absorp-
tion should not be very high. Thus, ignoring it will not affect the distance
very much. 2.0

iv. The Gaia mission of the European Space Agency has been mapping the Milky
Way since 2014, measuring the parallax and proper motion of 1.5 billion stars
to an accuracy between 0.04 and 0.1 milliarcseconds (mas). Could Gaia have
measured the parallax of HVS1,

(A) if it is a MS star? Write “YES” or “NO”.

(B) if it is a subgiant? Write “YES” or “NO”.

Solution

(A) if it is a MS star,

π = 1/d ∼ 0.01mas < πGAIA

Hence, the answer is “No”. 1.0

(B) If it is a subgiant, then the distance is even larger. Hence, the answer
is again “No”. 1.0

For the rest of this question, adopt the larger of the two distances you
have calculated above.

v. Assume that the distance of the Sun from the Galactic center is 8.0 kpc.
Make a rough sketch of the relative positions of HVS1, the Sun and the Galactic
center. Use it to calculate the distance (r) of HVS1 from the Galactic center.

Solution

Sun
GC

HVS1

S C

H

P

l

b

2.0The left panel is to the scale. The right panel shows details of the drawing.
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d(HC)2 = d(HP )2 + d(PC)2

= d(HP )2 +
[
d(SC)2 + d(PS)2 − 2 · d(SC) · d(PS) cos(]PSC)

]
r2 = (d sin b)2 + r2� + (d cos b)2 − 2r�d cos b cos(360◦ − l)

∴ r =
√
d2 + r2� − 2r�d cos b cos l

=
√

105.72 + 82 − 2× 8× 105.7 cos(31.332◦) cos(227.335◦)

∴ r ≈ 110 kpc 4.0

(c) (17 points) Here, you will calculate the actual velocity of HVS1.

i. The spectrum in Fig1 shows two absorption lines due to Ca II. One is caused by
the atmosphere of the star and the other is due to the interstellar medium. The
shift of this line is due to the motion of the star with respect to the interstellar
medium. Measure this Doppler shift and calculate the radial velocity of HVS1
with respect to the Sun.

Solution From the spectrum, we can estimate the line shift as

∆λ = (11± 2) Å, λ0 = 3934 Å 3.0

Doppler shift gives the heliocentric velocity

vrHC =
c∆λ

λ0
= (840± 150) km s−1 2.0

ii. We are interested in the velocity with respect to the Galactic center. For this we
first need to take into account the velocity of the Sun due to the rotation of the
Galaxy. The following equation transforms the velocity of a star of heliocentric
radial velocity vrHC to one in the Galactic rest frame (rf), vrf :

vrf = vrHC + 11.1 cos l cos b+ 247.24 sin l cosb+ 7.25 sin b,

where the speeds are measured in km s−1.
Find vrf for HVS1.

Solution

vrf = vrHC + 11.1 cos l cos b+ 247.24 sin l cosb+ 7.25 sin b

= 840 + 11.1 cos(227.335◦) cos(31.332◦)

+ 247.24 sin(227.335◦) cos(31.332◦) + 7.25 sin(31.332◦)

vrf = (680± 130) km s−1 2.0

iii. HVS1’s proper motion has been measured as:

(µα, µδ) = (+0.08± 0.26,−0.12± 0.22) mas/yr.

Calculate the tangential velocity component (in km s−1) of HVS1. (You may
ignore the correction for declination as the star is near the celestial equator).
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Solution
The length of an arc does not depend on the coordinate system. Thus,

∆µ =
√
µ2
α + µ2

δ

=
√

0.082 + 0.122

∆µ = (0.144± 0.340) mas/yr 2.0

vθ = d∆µ =
105.7× 103 × 3.086× 1013 × 0.144× 10−3

206 265× 3.16× 107

= (72± 170) km s−1 2.0

iv. Calculate the velocity vT of the star with respect to the Galactic center (magni-
tude in km s−1 and angle with respect to direction of the Galactic center).

Solution
The direction to the Galactic center is also perpendicular to the plane of
the sky. Thus,

vT =
√
v2rf + v2θ =

√
6802 + 722

vT = (684± 210) km s−1 2.0

i.e. it is almost radial.

θ = tan−1
(
vθ
vrf

)
≈ tan−1(0.105) ≈ 6◦ 2.0

v. Assuming this star was born within the Galactic disc, use your calculation of
the velocity to estimate where in the Galactic disc it is more likely to have come
from:

(A) near to the Galactic center

(B) further out in the Galactic disc

Solution As the velocity is almost radial, extrapolating backwards, the
star would be in galactic disk somewhere close to the galactic centre. Thus,
the answer is A. 2.0

(d) (6 points) From the energy considerations,

i. Write expression for the escape speed vesc as a function of the distance from the
Galactic center and the enclosed mass.
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Solution

vesc =

√
2GM

r
1.0

ii. Calculate the mass of the galaxy (in solar masses) within the radius of the dis-
tance of HVS1.

Mr = 4πρ0r
2
c

[
r − rc tan−1

(
r

rc

)]
where rc ≈ 8 pc is an constant of the equation and ρ0 = 1.396× 104M�pc−3.

Solution

Mr = 4πρ0r
2
c

[
r − rc tan−1

(
r

rc

)]
= 4π × 1.396× 104 × 82

[
110− 8× tan−1

(
110

8

)]
Mr(110 kpc) ≈ 1.2× 1012M� 2.0

iii. Calculate the magnitude of the escape velocity at the distance of HVS1.

Solution

vesc =

√
2GM

r
=

√
2× 6.674× 10−11 × 1.2× 1012 × 1.998× 1030

110× 103 × 3.086× 1016

= 311 km s−1 2.0

iv. Is this a runaway star? Write “YES” or “NO”.

Solution
vrf > vesc =⇒ Yes. 1.0

(e) (2 points) How long has it taken for HVS1 to reach this position?

Solution If HSV1 originated close to the galactic center and assuming is was
ejected at the measured speed, it has been traveling for

ttrav =
r

vrf
=

110× 103 × 3.086× 1016

680× 103 = 1.6× 108 yr 2.0

(f) (3 points) On the basis of the spectral type and the luminosity class of this star,
estimate the age of HVS1 and compare this with your result in the previous part.
Which one of the following statements about the origin of the star is true:

(A) The star was ejected when or shortly after it was formed.

(B) The star was ejected mid-way through its time on the Main Sequence.
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(C) The star was ejected towards the end of its time on the Main Sequence.

Solution
Main Sequence life time for the star will approximately be

t ∼ M

L
∼ L−5/7

Comparing with absolute magnitude of the Sun,

t ∼ 108 yr

This is very similar to the time taken by the star to travel from the disk to
present position. Thus, the anwer is A. 3.0

(g) (2 points) Astronomers looking for HVS-s start by finding a sample of stars in the
Galactic halo which are of a spectral type similar to that of HVS1. Explain why by
choosing which one of the following statements is true:

(A) Stars of this spectral type are young and so belong to the native population of
the halo.

(B) Stars of this spectral type are old and so belong to the native population of the
halo.

(C) Stars of this spectral type are young and so do not belong to the native popu-
lation of the halo.

(D) Stars of this spectral type are old and so do not belong to the native population
of the halo.

Solution Stars of early type are very young, so they cannot belong to the
native population of the halo. They must be coming from elsewhere. As a
result, they may be moving very fast and some of them may be on their way
to abandoning the Milky Way.
=⇒ C. 2.0
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